

Welcome to FedTree’s documentation!

FedTree is a federated learning system for tree-based models. It is designed to be highly efficient, effective,
and secure. It has the following features.

	Parallel computing on multi-core CPUs and GPUs.

	Stand-alone simulation and distributed learning.

	Support of homomorphic encryption, secure aggregation, and differential privacy.

	Federated training algorithms of gradient boosting decision trees and random forests.

[image: _images/fedtree_archi.png]

Contents:

	 Installation

	 Quick Start

	 APIs/Parameters

	 Examples

	 Frameworks

	 Experiments

Installation

Here is the guide for the installation of FedTree.

Contents

	Prerequisites

	Install Fedtree

	Build on Linux

	Build on MacOS

Prerequisites

	CMake [https://cmake.org/] 3.15 or above

	GMP [https://gmplib.org/] library

	NTL [https://libntl.org/] library

	gRPC [https://grpc.io/docs/languages/cpp/quickstart/] 1.50.0 (required for distributed version)

You can follow the following commands to install NTL library.

wget https://libntl.org/ntl-11.5.1.tar.gz
tar -xvf ntl-11.5.1.tar.gz
cd ntl-11.5.1/src
./configure SHARED=on
make
make check
sudo make install

If you install the NTL library at another location, please pass the location to the NTL_PATH when building the library (e.g., cmake .. -DNTL_PATH=”PATH_TO_NTL”).

For gRPC, please remember to add the local bin folder to your path variable after installation, e.g.,

export PATH="$gRPC_INSTALL_DIR/bin:$PATH"

We suggest you install gPRC 1.50.0, i.e., using -b v1.50.0 when cloning gRPC repo.

If your gRPC version is not 1.50.0, you need to go to src/FedTree/grpc directory and run

protoc -I ./ --grpc_out=. --plugin=protoc-gen-grpc=`which grpc_cpp_plugin` ./fedtree.proto
protoc -I ./ --cpp_out=. ./fedtree.proto

Clone Install submodules

Run the following commands:

git clone https://github.com/Xtra-Computing/FedTree
cd FedTree
git submodule init
git submodule update

Build on Linux (Recommended)

Run the following commands:

under the directory of FedTree
mkdir build && cd build
cmake ..
make -j

Build on MacOS

On MacOS, you can use Apple Clang to build FedTree.

Build with Apple Clang

Install libomp if you haven’t:

brew install libomp

Run the following commands:

mkdir build
cd build
cmake -DOpenMP_C_FLAGS="-Xpreprocessor -fopenmp -I/usr/local/opt/libomp/include" \
 -DOpenMP_C_LIB_NAMES=omp \
 -DOpenMP_CXX_FLAGS="-Xpreprocessor -fopenmp -I/usr/local/opt/libomp/include" \
 -DOpenMP_CXX_LIB_NAMES=omp \
 -DOpenMP_omp_LIBRARY=/usr/local/opt/libomp/lib/libomp.dylib \
 ..
make -j

Building Options

There are the following building options passing with cmake.

	USE_CUDA [default = OFF]: Whether using GPU to accelerate homomorphic encryption or not. It is available only when setting DISTRIBUTED to OFF.

	DISTRIBUTED [default = ON]: Whether building distributed version of FedTree or not.

	NTL_PATH [default = /usr/local]: The PATH to the NTL library.

For example, if you want to build a version with GPU acceleration, distributed version with NTL library under /home/NTL directory, you can use the following command.

cmake .. -DUSE_CUDA=ON -DDISTRIBUTED=ON -DNTL_PATH="/home/NTL"
make -j

Quick Start

Here we present an example to simulate vertical federated learning with FedTree to help you understand the procedure of using FedTree.

Prepare a dataset / datasets

You can either prepare a global dataset to simulate the federated setting by partitioning in FedTree or prepare a local dataset for each party.

For the data format, FedTree supports svmlight/libsvm format (each row is an instance with label feature_id1:feature_value1 feature_id2:feature_value2 ...)
and csv format (the first row is the header id,label,feature_id1,feature_id2,... and the other rows are the corresponding values).
See here [https://github.com/Xtra-Computing/FedTree/blob/main/dataset/test_dataset.txt] for an example of libsvm format dataset
and here [https://github.com/Xtra-Computing/FedTree/blob/main/dataset/credit/credit_vertical_p0_withlabel.csv] for an example of csv format dataset.

For classification task, please ensure that the labels of the dataset are organized as 0 1 2 ... (e.g., use labels 0 and 1 for binary classification).

Configure the Parameters

You can set the parameters in a file, e.g., machine.conf under dataset subdirectory.
For example, we can set the following example parameters to run vertical federated learning using homomorphic encryption to protect the communicated message.
For more details about the parameters, please refer to here [https://fedtree.readthedocs.io/en/latest/Parameters.html#].

data=./dataset/test_dataset.txt
test_data=./dataset/test_dataset.txt
partition_mode=vertical
n_parties=4
mode=vertical
privacy_tech=he
n_trees=40
depth=6
learning_rate=0.2

Run FedTree

After you install FedTree, you can simply run the following commands under FedTree directory to simulate vertical federated learning in a single machine.

./build/bin/FedTree-train ./examples/vertical_example.conf
./build/bin/FedTree-predict ./examples/prediction.conf

APIs/Parameters

We provide two kinds of APIs: command-line interface (CLI) and Python interface. For CLI, users only need to prepare a
configuration file specifying the parameters and call FedTree in a one-line command. For Python interface, users can define
two classes FLClassifier and FLRegressor with the parameters and use them in a scikit-learn style (see here [https://github.com/Xtra-Computing/FedTree/tree/main/python]).
The parameters are below.

Contents

	Parameters for Federated Setting

	Parameters for GBDTs

	Parameters for Privacy Protection

Parameters for Federated Setting

	
	mode [default = horizontal, type=string]
	
	horizontal: horizontal federated learning

	vertical: vertical federated learning

	
	num_parties [default = 10, type = int, alias: num_clients, num_devices]
	
	Number of parties

	
	partition [default = 0, type = bool]
	
	0: each party has a prepared local dataset

	1: there is a global dataset and users require FedTree to partition it to multiple subsets to simulate federated setting.

	
	partition_mode [default=``horizontal``, type=string]
	
	horizontal: horizontal data partitioning

	vertical: vertical data partitioning

	
	ip_address [default=``localhost``, type=string, alias: server_ip_address]
	
	The ip address of the server in distributed FedTree.

	
	data_format [default=``libsvm``, type=string]
	
	libsvm: the input data is in a libsvm format (label feature_id1:feature_value1 feature_id2:feature_value2). See here [https://github.com/Xtra-Computing/FedTree/blob/main/dataset/test_dataset.txt] for an example.

	csv: the input data is in a csv format (the first row is the header and the other rows are feature values). See here [https://github.com/Xtra-Computing/FedTree/blob/main/dataset/credit/credit_vertical_p0_withlabel.csv] for an example.

	
	n_features [default=-1, type=int]
	
	Number of features of the datasets. It needs to be specified when conducting horizontal FedTree with sparse datasets.

	
	propose_split [default=``server``, type=string]
	
	server: the server proposes candidate split points according to the range of each feature in horizontal FedTree.

	party: the parties propose possible split points. Then, the server merge them and sample at most num_max_bin candidate split points in horizontal FedTree.

	
	key_length [default=512, type=int]
	
	Number of bits of the key used in encryption.

	
	pred_output [default=``predictions.txt``, type=string]
	
	The file to save the predicted labels when using FedTree-predict

Parameters for GBDTs

	
	data [default=``../dataset/test_dataset.txt``, type=string, alias: path]
	
	The path to the training dataset(s). In simulation, if multiple datasets need to be loaded where each dataset represents a party, specify the paths seperated with comma.

	
	model_path [default=``fedtree.model``, type=string]
	
	The path to save/load the model.

	
	verbose [default=1, type=int]
	
	Printing information: 0 for silence, 1 for key information and 2 for more information.

	depth [default=6, type=int]

	The maximum depth of the decision trees. Shallow trees tend to have better generality, and deep trees are more likely to overfit the training data.

	n_trees [default=40, type=int]

	The number of training iterations. n_trees equals to the number of trees in GBDTs.

	max_num_bin [default=32, type=int]

	The maximum number of bins in a histogram. The value needs to be smaller than 256.

	learning_rate [default=1, type=float, alias: eta]

	Valid domain: [0,1]. This option is to set the weight of newly trained tree. Use eta < 1 to mitigate overfitting.

	objective [default=``reg:linear``, type=string]

	Valid options include reg:linear, reg:logistic, binary:logistic, multi:softprob, multi:softmax, rank:pairwise and rank:ndcg.

	reg:linear is for regression, reg:logistic and binary:logistic are for binary classification.

	multi:softprob and multi:softmax are for multi-class classification. multi:softprob outputs probability for each class, and multi:softmax outputs the label only.

	rank:pairwise and rank:ndcg are for ranking problems.

	
	num_class [default=1, type=int]
	
	Set the number of classes in the multi-class classification.

	min_child_weight [default=1, type=float]

	The minimum sum of instance weight (measured by the second order derivative) needed in a child node.

	lambda [default=1, type=float, alias: lambda_tgbm or reg_lambda]

	L2 regularization term on weights.

	gamma [default=1, type=float, alias: min_split_loss]

	The minimum loss reduction required to make a further split on a leaf node of the tree. gamma is used in the pruning stage.

Parameters for Privacy Protection

	
	privacy_method [default = none, type=string]
	
	none: no additional method is used to protect the communicated messages (raw data is not transferred).

	he: use homomorphic encryption to protect the communicated messages (for vertical FedTree).

	sa: use secure aggregation to protect the communicated messages (for horizontal FedTree).

	dp: use differential privacy to protect the communicated messages (currently only works for vertical FL with single machine simulation).

	
	privacy_budget [default=10, type=float]
	
	Total privacy budget if using differential privacy.

Examples

Here we present several additional examples of using FedTree.

Distributed Horizontal FedTree with Secure Aggregation

In the horizontal FedTree, the parties have their local datasets with the same feature space but different sample spaces.
Also, in each machine, a configuration file needs to be prepared.
We take UCI Adult [https://archive.ics.uci.edu/ml/datasets/adult] dataset as an example (partitioned data provided in here [https://github.com/Xtra-Computing/FedTree/tree/main/dataset/adult]).

In the server machine, the configuration file server.conf can be:

test_data=./dataset/adult/a9a_horizontal_test
n_parties=2
objective=binary:logistic
mode=horizontal
partition=0
privacy_tech=sa
learning_rate=0.1
max_depth=6
n_trees=50

In the above configuration file, it needs to specifies number of parties, objective function, mode, privacy techniques, and other parameters for the GBDT model.
The test_data specifies the dataset for testing.

Supposing the ip address of the server is a.b.c.d, in the party machine 1, the configuration file party1.conf can be:

data=./dataset/adult/a9a_horizontal_p0
test_data=./dataset/adult/a9a_horizontal_test
model_path=p1.model
n_parties=2
objective=binary:logistic
mode=horizontal
partition=0
privacy_tech=sa
learning_rate=0.1
max_depth=6
n_trees=50
ip_address=a.b.c.d

The difference between party1.conf and server.conf is that party1.conf needs to specify the path to the local data and the ip address of the server.
Similarly, we can have a configuration file for each party machine by changing the data (and model_path if needed). Then, we can run the following commands in the corresponding machines.

under 'FedTree' directory
under server machine
./build/bin/FedTree-distributed-server ./server.conf
under party machine 1
./build/bin/FedTree-distributed-party ./party1.conf 0
under party machine 2
./build/bin/FedTree-distributed-party ./party2.conf 1
......

In the above commands, the party machines need to add an additional input ID starting from 0 as its party ID.

Distributed Vertical FedTree with Homomorphic Encryption

In the vertical FedTree, the parties have their local datasets with the same sample space but different feature spaces.
Moreover, at least one party has the labels of the samples. We need to specify one of the parties that has labels as the aggregator.
Suppose party machine 1 is the aggregator. Then, we need to write a server configuration file server.conf, e.g.,

data=./dataset/adult/a9a_vertical_p0
test_data=./dataset/adult/a9a_vertical_test
n_parties=2
mode=vertical
partition=0
reorder_label=1
objective=binary:logistic
privacy_tech=he
learning_rate=0.1
max_depth=6
n_trees=50

For each party machine, supposing the ip address of the aggregator is a.b.c.d, we need to write a configuration file, e.g., party1.conf in party 1

data=./dataset/adult/a9a_vertical_p0
test_data=./dataset/adult/a9a_vertical_test
model_path=p1.model
n_parties=2
mode=vertical
partition=0
reorder_label=1
objective=binary:logistic
privacy_tech=he
learning_rate=0.1
max_depth=6
n_trees=50
ip_address=a.b.c.d

Then, we can run the following commands in the corresponding machines:

#under aggregator machine (i.e., party machine 1)
./build/bin/FedTree-distributed-server ./server.conf
#under party machine 1
./build/bin/FedTree-distributed-party ./party1.conf 0
#under party machine 2
./build/bin/FedTree-distributed-party ./party2.conf 1

Frameworks

Here is an introduction of FedTree algorithms.

Contents

	Horizontal Federated GBDTs

	Vertical Federated GBDTs

	Build on Linux

	Build on MacOS

Horizontal Federated GBDTs

In the horizontal FedTree, the parties have their local datasets with the same feature space but different sample spaces. The framework of horizontal federated GBDTs training is shown below. There are four steps in each round.

[image: _images/hori_fram.png]

	The server sends the initialization parameters (#round = 1) or sends the new tree (#round > 1) to the parties.

	The parties update the gradient histogram.

	The parties send the gradient histogram to the server.

	The server merges the histogram and boosts a new tree.

We repeat the above steps until reach the given number of trees.

We provide the option to adopt the secure aggregation [https://arxiv.org/pdf/1611.04482.pdf] method to protect the exchanged histograms.
In the beginning of training, the clients and the server use Diffie-Hellman key exchange to share a secret key for each pair of clients.
Then, before transfering the gradient histogram, each client generates random noises for each other client, encrypts the noises by the shared key of the corresponding client, and sends the encrypted noises to the server.
Then, the server sends back the encrypted noises to the clients. The clients decrypts the noises with the shared keys. Then, the clients add the generated noises and subtract the decrypted noises to the local histogram.
The injected noises of each client cancel each other out and the aggregates histogram remains unchanged.

The detailed algorithm is shown below.

[image: _images/fedtree_hori.png]
If adopting differential privacy, the server will train a differentially private tree in the fourth step using Laplace mechanism and exponential mechanism.

Vertical Federated GBDTs

In the vertical FedTree, the parties have their local datasets with the same sample space but different feature spaces.
Moreover, at least one party has the labels of the samples. We specify one party that has the labels as the host party (i.e., aggregator).

The framework of vertical federated GBDTs training is shown below. There are four steps in each round.

[image: _images/verti_fram.png]

	The host party (i.e., the party with the labels) updates the gradients and sends the gradients to the other parties.

For each depth:

	The parties computes the local gradient histograms.

	The parties send their local histograms to the host party.

	The host party aggregate the histograms, computes the best split point, and ask the corresponding party (including itself) to update the node.

	The parties send back the nodes to the host party.

Here 2-4 steps are done for each depth of a tree until reaching the given maximum depth. The above steps are repeated until reaching the given number of trees.
If homomorphic encryption is applied, the host party sends the encrypted gradients in the first step and decrypts the histogram in the fourth step.

We provide the option to adopt additive homomorphic encryption [https://en.wikipedia.org/wiki/Paillier_cryptosystem] to protect the exchanged gradients.
Specifically, the host party generates public and private keys before the training. Then, it uses the public key to encrypt the gradients before sending them.
After receiving local histograms from the parties, the host party uses privacy key to decrypt the histograms before further computation.

The detailed algorithm is shown below.

[image: _images/fedtree_verti.png]
If differential privacy is applied, the host party updates the tree using Laplace mechanism and exponential mechanism.

Experiments

Here we present some preliminary experimental results. We use two UCI datasets, adult [https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a] and abalone [https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html#abalone] for experiments.
The adult dataset is a classification dataset and the abalone is a regression dataset. We use FedTree-Hori to denote the horizontal FedTree and FedTree-Verti to denote the vertical FedTree.

Baselines: Homo-SecureBoost and Hetero-SecureBoost. Both approaches are from FATE [https://github.com/FederatedAI/FATE].

Standalone Simulation

For the standalone simulation, we use a machine with 64*Intel Xeon Gold 6226R CPUs and 8*NVIDIA GeForce RTX 3090 to conduct experiments.
We allocate each experiment with 16 threads. By default, we set the number of parties to 2, the number of trees to 50, learning rate to 0.1, the maximum depth of tree to 6, and the maximum number of bins to 255.
The other parameters of all approaches are set to the default setting of FedTree.

Effectiveness

We first compare the accuracy of federated training and centralized training using XGBoost [https://github.com/dmlc/xgboost] and ThunderGBM [https://github.com/Xtra-Computing/thundergbm]. The results are shown below.
We report AUC for adult and RMSE for abalone. We can observe that the performance of FedTree is same as ThunderGBM. Also, SA and HE do not affect the model performance.

	datasets

	XGBoost

	ThunderGBM

	FedTree-Hori

	FedTree-Hori+SA

	FedTree-Verti

	FedTree-Verti+HE

	Homo-SecureBoost

	Hetero-SecureBoost

	a9a

	0.914

	0.914

	0.914

	0.914

	0.914

	0.914

	0.912

	0.914

	abalone

	1.53

	1.57

	1.57

	1.57

	1.56

	1.57

	1.56

	0.001

Efficiency

We compare the efficiency of FedTree-Hori with Homo-SecureBoost of FATE. The results are shown below. We present the trainig time (s) per tree.
Note that FedTree-Hori+SA achieves the same security guarantee as Homo-SecureBoost. The speedup is the computed by the improvement of FedTree-Hori+SA over Homo-SecureBoost, which is quite significant.

	datasets

	FedTree-Hori

	FedTree-Hori+SA

	Homo-SecureBoost

	Speedup

	a9a

	0.09

	0.098

	8.76

	89.4

	abalone

	0.11

	0.19

	7.7

	40.5

We compare the efficiency of FedTree-Verti with Hetero-SecureBoost of FATE.
We present the trainig time (s) per tree. Note that FedTree-Verti+HE achieves the same security guarantee as SecureBoost.
The speedup is the improvement of FedTree-Verti + HE (CPU) over FATE. FedTree is still much faster than SecureBoost. Moreover, FedTree can utilize GPU to accelerate the HE computation.

	datasets

	FedTree-Verti

	FedTree-Verti+HE (CPU)

	FedTree-Verti+HE (GPU)

	Hetero-SecureBoost

	Speedup

	a9a

	0.11

	5.25

	3.24

	34.02

	6.48

	abalone

	0.05

	7.43

	6.5

	15.7

	2.11

Distributed Computing

For distributed setting, we use a cluster with 5 machines, where each machine has two Intel Xeon E5-2680 14 core CPUs.
We set the number of parties to 4, where each party hosts a machine. The results are shown below. Here Homo-SecureBoost (from FATE) and FedTree-Hori+SA have the same security level.
We can observe that both horizontal and vertical FedTree are faster than FATE.

	datasets

	Homo-SecureBoost

	FedTree-Hori + SA

	Speedup

	SecureBoost

	FedTree-Verti+HE

	Speedup

	a9a

	214.7

	124.4

	1.7

	505.4

	93.2

	5.4

	abalone

	256.3

	156.8

	1.6

	299.8

	143.5

	2.1

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to FedTree’s documentation!

 		
 Installation

 		
 Prerequisites

 		
 Clone Install submodules

 		
 Build on Linux (Recommended)

 		
 Build on MacOS

 		
 Build with Apple Clang

 		
 Building Options

 		
 Quick Start

 		
 Prepare a dataset / datasets

 		
 Configure the Parameters

 		
 Run FedTree

 		
 APIs/Parameters

 		
 Parameters for Federated Setting

 		
 Parameters for GBDTs

 		
 Parameters for Privacy Protection

 		
 Examples

 		
 Distributed Horizontal FedTree with Secure Aggregation

 		
 Distributed Vertical FedTree with Homomorphic Encryption

 		
 Frameworks

 		
 Horizontal Federated GBDTs

 		
 Vertical Federated GBDTs

 		
 Experiments

 		
 Standalone Simulation

 		
 Effectiveness

 		
 Efficiency

 		
 Distributed Computing

_images/verti_fram.png

_images/fedtree_verti.png
Algorithm 2: FedTree-Verti with Homomorphic Encryption (HE)

10
11

12
13

Input: Parties Py, ..., P,,, number of trees T', tree depth d. Assume P; has the labels.

Output: The final GBDT model f.

1 S < ProposeSplitCandidates()

/* Conduct on P; */

P, generates HE key pair (Kpup, Kpri)-
P, sends public keys to the other parties.
fori=1,...,T do

/*

/*

Conduct on party P, */

g, h < UpdateGradients()

9],
Send [g], [h] to the other parties.

[h] < Encrypt(g, Kpub), Encrypt(h, Kpup)

Conduct on party P; */

for j=1,...,d do

fork=1,..,ndo
/* Conduct on each party Py */
[Glk, [H]k < ComputeHistogram([g], [h], Sk)
Send [G]k, [H]k to P;.
/* Conduct on P; */
G, H < Decrypt(|Gl«, Kpri), Decrypt([H]«, Kprs)
Update depth j of tree f; using G, H with the parties that have the
corresponding split features for each node

_images/hori_fram.png

_static/minus.png

_static/plus.png

_static/file.png

_images/fedtree_archi.png
Hardware Environment Interface

CPUs GPUs Standalone Distributed CLI Python

simulation computing

L) L] L)

Horizontal Federated Learning |§ Vertical Federated Learning Federated Ensemble

Dataset Model
Homomorphic
Encryption Horizontal ‘ GBDTs ‘ ‘ Random Forests ‘
Partition : :
Boosting | Bagging
Secure Aggregation @(ﬁ
m
Differential Privacy Partition ‘ Objective ‘ ‘ Metric ‘

_images/fedtree_hori.png
Algorithm 1: FedTree-Hori with secure aggregation.

Input: Parties P, ..., P,, number of trees T, tree depth d
Output: The final GBDT model f.

1 S < ProposeSplitCandidates()

10
11

12

Each pair of party (P;, P;) shares a secret key K;; using Diffie-Hellman key exchange
fori=1,...,T do
/* Conduct on each party */
g, h < UpdateGradients()
for j=1,...,d do
for m=1,...,n do
/* Conduct on party P, */
G, H < ComputeHistogram(g, h, S)
[G]’ [H] A G+ Zz KZ* - Zz K*Z’H + Zz KZ* - Zz K*Z
Send [G], [H] to server.

/* Conduct on server */

Gsum’ Hsum <_ Z[G]’ Z[H]
B Update depth j of tree f; using the histograms Ggsym, Hsum.-

/* Conduct on server */
| Send f; to each party.

